公众号
关注微信公众号
移动端
创头条企服版APP

千字干货!从传统到云的趋势看ETL的状态

321

每个企业里的每个部门、每个团队都拥有潜在的高价值数据宝库,但很可惜其中的73%未被使用到,因为缺乏相应的数据整合工具,所以ETL是解决这个问题的很好办法。然而,最初的ETL流程是为十年前的业务需求而构建的,现在的时代已经变了。


图片3.png 


当今的企业拥有的数据源数量正在以非常高的速度增长着,有研究表明,现代企业可以在其的环境中拥有多达400个企业应用程序,以及产生大量数据的社交媒体平台和移动技术。为了整合这一切,管理数据的领导者需要以新的方法来整合这些历史数据,以利用这些数据来进行战略业务规划。

 

过去的ETL


在过去,少数数据源的ETL流程可以由简单的工具处理完成。然而,随着数据量和的增加,系统和流程出现故障的概率也在不断增加,因为传统的ETL工具带有一连串的缺点。

 

对于初学者来说,许多ETL功能历来都是手动编码的,这是一个漫长且复杂的过程,手工编码的过程非常具有挑战性:一个开发人员难以学习另一个开发人员的代码,导致许多开发人员必须从头开始重写代码,增加了操作的时间和费用。更糟糕的是,每当团队成员离开或代码(或配置)未记录在案时,公司就会面临很大的风险。就日常运营和对业务用户的影响而言,本地ETL系统在为企业做出明智决策所需的洞察力方面一直很慢。

 

这些系统通常用于批处理,通常会迫使企业在非工作时间(例如夜间)里使用计算资源来运行ETL进行作业,最终会导致更高的成本、功耗、硬件和人员开销,以及更高的停机或服务中断的风险。

 

现代基于云的ETL


传统的ETL流程特征是批量提取数据,在暂存区对其进行转换,然后将其加载到数据仓库或其他地方,但是该模型不符合现代业务需求。

 

在当今的业务环境中,数据提取必须实时工作,并为用户提供自助服务功能,以便随时运行查询并查看当前情况。而且,随着公司越来越多地将更多的应用程序和工作负载迁移到云端了,他们将面临成倍增长的数据集以及来自众多渠道的数据源,所以ETL工具必须可以毫不费力地处理这些大量的数据。

 

现代ETL工具应该能够在任何云产品上运行良好,并且应该能够随着公司更换云的提供商而轻松迁移,还必须具有良好的容错性、安全性、可扩展性和端到端的准确性,尤其是在为新的机器学习 (ML) 或人工智能 (AI) 模型提供关键信息时,可以做出准确且更具前瞻性的判断。

 

比较表


图片4.png


现在是实现ETL现代化的时候了


关于云ETL的工具挺多的,这里重点介绍一个Smartbi智分析的云ETL工具,功能非常强大,处理过程非常智能,通过鼠标简单的拖拽便可以进行复杂的ETL程序。最具有价值的地方是它的云属性,只要有网络便可以随时随地进行工作,不受限于时间与空间。


声明:该文章版权归原作者所有,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系。
您阅读这篇文章花了0
转发这篇文章只需要1秒钟
喜欢这篇 0
评论一下 0
凯派尔知识产权全新业务全面上线
相关文章
评论
试试以这些内容开始评论吧
登录后发表评论
凯派尔知识产权全新业务全面上线
阿里云创新中心
×
#热门搜索#
精选双创服务
历史搜索 清空

Tel:18514777506

关注微信公众号

创头条企服版APP